other form:
proof To use mathematical induction, we assume that it is established at d and show that it is established at d+1
Formal derivative of a formal power series Divide both sides by d to organize
- Definition of [binomial coefficient
- from (e.g. time, place, numerical quantity) therefore To recap. Therefore, it is shown to hold at d+1
For d=1 This was shown in [infinite sum compression using the inverse of a formal power series#5f0a99d3aff09e00008d4555
[Polynomials and Formal Power Series (3) Linear Asymptotes and Formal Power Series | maspy’s HP https://maspypy.com/%e5%a4%9a%e9%a0%85%e5%bc%8f%e3%83%bb%e5%bd%a2%e5%bc%8f%e7%9a%84%e3%81%b9% e3%81%8d%e7%b4%9a%e6%95%b0%ef%bc%88%ef%bc%93%ef%bc%89%e7%b7%9a%e5%bd%a2%e6%bc%b8%e5%8c%96%e5%bc%8f%e3%81%a8%e5%bd%a2%e5%bc%8f]
This page is auto-translated from /nishio/負の二項定理 using DeepL. If you looks something interesting but the auto-translated English is not good enough to understand it, feel free to let me know at @nishio_en. I’m very happy to spread my thought to non-Japanese readers.