image

antagonistic dimension

  • 1: A and B are in conflict
  • 2: (A+B) and C are in conflict
  • 3: ((A+B)+C) and D are in conflict
    • Here the number of dimensions is not enough so that A and B become identical in the 2-dimensional PCA.
    • Nonlinear dimensionality reduction (UMAP, etc.) should split

Experiment. py

A = np.array([-1, 0, 0])
B = np.array([1, 0, 0])
C = np.array([0, 2, 0])
D = np.array([0, 0, 4])
  • image
  • image
    • SD=0.1
    • Lack of dimensionality causes A and B, which have the least separation in PCA, to mix and become one.
    • The UMAP is clearly divided
  • image
    • SD=0.5
    • They are also placed in close proximity in UMAP by A and B data becoming inseparable in the first place.
  • image
    • SD=0.75
    • A, B, and C cannot be separated and become connected.
  • image
    • SD=1
  • image
    • SD=1.5
    • It’s all in one piece.
    • string artifact is occurring.
    • Because of a lack of data?
    • You can’t increase it by a factor of 10.
      • image

It looks like Variational Bayesian is needed to distinguish between them


This page is auto-translated from /nishio/対立次元 using DeepL. If you looks something interesting but the auto-translated English is not good enough to understand it, feel free to let me know at @nishio_en. I’m very happy to spread my thought to non-Japanese readers.