- TypeScript types to solve the worm-eaten arithmetic Simple problem of finding 1~3 different values satisfying T1 + T2 = T3
- Numbers are expressed in binary notation and addition is constructed using 1-bit logic operations.
- I fell into the Can’t TypeScript define types recursively? trap when I tried to use Church’s number.
- Conditional expressions are in the form of any or never return
- The and operation of a condition corresponds to an intersection of types
- The test code assigns “OK” to the result type, and if the result is never, a type error occurs.
- The problem I wanted to solve:
- Since division can be eliminated by expression transformation, it should be possible to implement a larger number type and multiplication… ts
type BIN = 0 | 1;
type XOR<A extends BIN, B extends BIN> = (
A extends 0 ? B : (B extends 0 ? A : 0)
)
type AND<A extends BIN, B extends BIN> = (
A extends 0 ? 0 : B
)
type B2 = [BIN, BIN];
type N1 = [0, 1];
type N2 = [1, 0];
type N3 = [1, 1];
type ADD2DIGIT<A extends B2, B extends B2> = (
[
XOR<XOR<AND<A[1], B[1]>, A[0]>, B[0]>,
XOR<A[1], B[1]>
]
)
type EQUAL<A extends B2, B extends B2> = (
A extends B ? any : never
);
let a1: EQUAL<ADD2DIGIT<N1, N2>, N3> = "OK";
// let a2: EQUAL<ADD2DIGIT<N1, N1>, N3> = "OK"; // NG
// CONSTRAINT: T1 + T2 = T3
type CONSTRAINT<
T1 extends B2,
T2 extends B2,
T3 extends B2
> = (
EQUAL<ADD2DIGIT<T1, T2>, T3>
);
let b1: CONSTRAINT<N1, N1, N2> = "OK";
// let b2: CONSTRAINT<N1, N1, N3> = "OK"; // NG
let b3: CONSTRAINT<N2, N1, N3> = "OK";
type IS_PERMUTATION<
T1 extends B2,
T2 extends B2,
T3 extends B2
> =
T2 extends T1 ? never : (T3 extends (T1 | T2) ? never : any);
let c1: IS_PERMUTATION<N1, N2, N3> = "OK";
// let c2: IS_PERMUTATION<N2, N3, N2> = "OK"; // NG
let c3: IS_PERMUTATION<N2, N1, N3> = "OK";
type IS_SOLUTION<T1 extends B2, T2 extends B2, T3 extends B2> = (
IS_PERMUTATION<T1, T2, T3> & CONSTRAINT<T1, T2, T3>
);
let d1: IS_SOLUTION<N1, N2, N3> = "OK";
let d2: IS_SOLUTION<N2, N1, N3> = "OK";
// let d3: IS_SOLUTION<N1, N1, N2> = "OK"; // NG
// let d4: IS_SOLUTION<N2, N1, N2> = "OK"; // NG
Made all adders and linked lists.
- but type aliases cannot be called recursively, so it is not possible to take N type arguments and call them with N-1 type arguments.
- So I’m not so happy to have to write like ADDER3 calls ADDER2. ts
type FULL_ADDER<A extends BIN, B extends BIN, CARRY extends BIN> = (
[
XOR<AND<A, B>, AND<XOR<A, B>, CARRY>>,
XOR<XOR<A, B>, CARRY>
]
);
type BODY<BIN2 extends [BIN, BIN]> = BIN2[1];
type CARRY<BIN2 extends [BIN, BIN]> = BIN2[0];
type LIST = BIN | [BIN, LIST]
type CAR<X extends LIST> = (
X extends [BIN, LIST] ? X[0] : X
)
type CDR<X extends LIST> = (
X extends [BIN, LIST] ? X[1] : never
)
type CHAIN1<
P extends LIST, A1 extends BIN, B1 extends BIN,
FA1 = FULL_ADDER<A1, B1, CAR<P>>
> = (
FA1 extends [BIN, BIN] ?
[
CARRY<FA1>,
[
BODY<FA1>,
CDR<P>
]
] : never
)
type ADDER2<
A1 extends BIN, A2 extends BIN,
B1 extends BIN, B2 extends BIN,
P = FULL_ADDER<A2, B2, 0>
> = (
P extends LIST ?
CHAIN1<P, A1, B1>
: never
)
type ADDER3<
A1 extends BIN, A2 extends BIN, A3 extends BIN,
B1 extends BIN, B2 extends BIN, B3 extends BIN,
P = ADDER2<A2, A3, B2, B3>
> = (
P extends LIST ?
CHAIN1<P, A1, B1>
: never
)
{
const a1: ADDER3<1, 1, 1, 1, 1, 1> = [1, [1, [1, 0]]]
const a2: ADDER3<1, 1, 0, 1, 1, 1> = [1, [1, [0, 1]]]
const a3: ADDER3<1, 1, 0, 0, 1, 1> = [1, [0, [0, 1]]]
}
This page is auto-translated from /nishio/TypeScriptの型で虫食い算を解く using DeepL. If you looks something interesting but the auto-translated English is not good enough to understand it, feel free to let me know at @nishio_en. I’m very happy to spread my thought to non-Japanese readers.